ws-class-props
Regel 7: Regel 7:
 
|Beleidsthema=Geen
 
|Beleidsthema=Geen
 
|Tijd=9u-12u
 
|Tijd=9u-12u
|SessieType=Functionele werkgroep
+
|SessieType=Andere
 
|Locatie=Teams
 
|Locatie=Teams
 
|Datum=2024-04-16
 
|Datum=2024-04-16

Versie van 7 mei 2024 20:48

Technologie werkgroep

Deze thematische werkgroep richt zich op het identificeren en in kaart brengen van de functionele noden en interacties. Na de data- en informatiewerkgroep zijn deze respectievelijke noden helder geworden. Deze functionele werkgroep bouwt hierop verder om de data- en informatie-uitwisseling tussen mensen en systemen, mensen onderling en systemen onderling te schetsen.

De eerste thematische werkgroep rond 'Wegen' vond plaats op 16 april 2024.

Context

Initiatief

De stad Roeselare beschikt reeds over verschillende machine learning algoritmes die data genereren op basis van fotomateriaal en is hiervoor in contact met verschillende partijen. Deze data wordt gebruikt in zowel operationele processen als bij het nemen van beleidsbeslissingen.

Naast het voeden van eerder traditionele databanken stellen ze die intern ook ter beschikking via GEO loketten, en dit op een automatische manier. Deze kennis en ervaring willen ze verder uitbouwen en de algoritmes en processen tegelijkertijd ter beschikking stellen voor ieder bestuur, gaande van het kleinste lokaal bestuur tot bovenlokale overheden als Vlaanderen. Het concept van “machine learning as a service” laat de gebruiker om gebruik te maken van de data en de algoritmes zonder kennis te moeten uitbouwen van de technische achtergrond. Het moet als het ware een “dummy proof” platform worden waarbij men op een éénvoudige manier kan kiezen uit een overzichtelijke catalogus en kunnen “inpluggen” voor de processen die men nuttig acht. Door deze ontzorging kunnen meer besturen stappen zetten richting een sterker data gestuurde beleidsvorming en –voering.

Met het streven naar het opschalen van bestaande machine learning processen, het uitrollen van nieuwe mogelijkheden en deze via een platform als een service ter beschikking te stellen van alle overheden willen ze niet alleen zorgen voor meer data op Vlaams niveau maar ook voor “massa productie” aan een betaalbare prijs.

Dit alles kadert een groter geheel rond het City dashboard dat Roeselare enkele jaren geleden opgestart is. Hierbij is men gestart met het verzamelen van mobiele beelden en luchtbeelden. Deze data heeft men verzameld en verwerkt in een City dashboard. Uit dit dasboard kan heel wat informatie uit gehaald worden, waaronder ook informatie rond wegen waarrond we vandaag zullen brainstormen.

Wegen inventaris

De focus van deze toepassing binnen het MLaaS-project is het volgende:

  • monitoring kwaliteit wegmarkeringen
  • monitoring kwaliteit wegdek
  • Nazicht wegmarkeringen vs verkeersborden
  • plannen & budgetteren herbelijning wegen
  • plannen & budgetteren herstel/heraanleg wegen

Het onderzoek richt zich momenteel op het gebruik van luchtbeelden voor het detecteren en analyseren van wegmarkeringen. In een volgende stap worden satellietbeelden gebruikt. Verder wordt machine learning wordt toegepast om beelden te analyseren en relevante informatie te extraheren. Uiteraard is de beeldkwaliteit van groot belang voor de resultaten van de algoritmes. Roeselare werkt samen met GIM die algoritmes ontwikkelen en deze ook testen op beelden van verschillende kwaliteit. Resultaten van tests met verschillende beeldmaterialen zijn veelbelovend met goede herkenning van standaardsymbolen en wegmarkeringen.

Er is veel potentieel voor het gebruik van eenvoudige orthofoto's voor het detecteren en analyseren van wegmarkeringen. We onderzoeken momenteel de limieten van verschillende soorten beeldmateriaal, waaronder luchtfoto's en satellietbeelden, voor nauwkeurige detectie.

Daarnaast richten we ons op het identificeren van extra types wegmarkeringen en symbolen, evenals het beoordelen van de kwaliteit van het wegdek volgens OCW-normen en andere criteria. Dit omvat ook het opzetten van monitoringssystemen om de kwaliteit van het wegdek te bewaken en analyses uit te voeren voor operationeel beheer.

We zijn van plan om onze activiteiten uit te breiden naar andere gemeenten, waaronder Brugge, Knokke-Heist, enzovoort.

Het ML as a Service platform (MLaaS) dat we ontwikkelen zal verschillende functies omvatten:

  1. Het opladen of bestellen van beeldmateriaal,
  2. Het selecteren van het juiste machine learning proces,
  3. Het uitvoeren van het proces en het downloaden van de resulterende data.

VLOCA

VLOCA, de Vlaamse Open City Architectuur, is een initiatief van het Agentschap Binnenlands Bestuur van de Vlaamse Overheid. De hulp van VLOCA aan lokale besturen start bij het scherpstellen van duidelijke, verstaanbare use cases en loopt door tot de aanbestedingsfase van het project. VLOCA vormt op deze manier een duidelijke brug tussen de beleidsdoelstellingen van het lokale bestuur en de technische laag waarin de oplossingen beschreven en geïmplementeerd worden. We stellen de juiste vragen en verzamelen de noden en behoeften van alle stakeholders (lokale besturen, kenniscentra, bedrijven en burgerorganisaties). Door een gestructureerde aanpak en verwerking van deze informatie wordt de ontwikkeling van herbruikbare bouwblokken, standaarden en normen gestimuleerd die van Vlaanderen één grote interoperabele slimme regio kunnen maken. De opgedane kennis en ervaring wordt ontsloten via een kennishub waarop onder andere draaiboeken, architectuur componenten en modellen ter beschikking gesteld worden voor alle andere lokale besturen en stakeholders.

Brainstormsessie

Doel

Het doel van de brainstormsessie is het volgende:

  • Identificatie van de meerwaardecreatie
  • Inzicht in wat je nodig hebt om de meerwaardecreaties te realiseren
  • Beschrijven van mogelijkheden om de oplossing te verduurzamen
  • Opsommen van valkuilen en potentiële principes waaraan de oplossing moet voldoen

Oefening 1+2

Bij deze oefeningen stonden we stil bij de volgende vragen:

1) Waarom is groen inventarisering belangrijk? Laat ons uitgaan van ‘the worst case’: we doen het niet.. Wat zijn de gevolgen?

  • Voorbeeld: We kunnen geen rapportering doen naar Vlaamse overheid/EU (subsidies?)

2) Wat heb je nodig om de geïdentificeerde meerwaardecreaties uit oefening 1 te realiseren? Lijst de acties op

  • Voorbeeld:

-Doel: we willen kunnen rapporteren naar Vlaanderen. Wat heb je hiervoor precies nodig?

-Ik wil het aantal bomen in een bepaalde regio gedurende een bepaalde tijd visueel weergeven, deze vergelijken met een ijkpunt/objectief en een actieplan opmaken

Overzicht

Discussie

Oefening 3

Bij deze oefening keken we naar manieren om de voorgestelde oplossing duurzaam te implementeren:

Hoe kunnen we groen inventarisering duurzaam implementeren?

-Welke frequentie en accuraatheid zijn hiervoor nodig?

-Hoe kunnen AI en ML bijdragen tot het verduurzamen van de oplossing?

-Welke expertise hebben we nodig?

-Hoe kunnen we de kosten delen?

-Zijn er applicaties die noodzakelijk zijn om de oplossing draaiende te houden?

=> zorgen dat de groen inventaris up to date gehouden wordt?

Overzicht

Discussie

Oefening 4

Tot slot werden potentiële valkuilen geïdentificeerd en, op basis hiervan, formuleerden we principes waaraan de oplossing moet voldoen:

Voorbeeld:

•Self-service zonder goede training kan een risico vormen

•Afhankelijkheid van leverancier

•Interoperabiliteit van de oplossing

•Betrouwbaarheid, en dus ‘vertrouwen’ in de output en dashboard cijfers

•Stabiliteit, en dus ‘continuiteit’ van de metrieken in de rapporten en dashboards

Overzicht

Discussie

Opname en Miro bord

Miro bord

Het Miro bord kan je consulteren via deze link.

Opname

De opname van deze sessie is te bekijken via deze link.


Volgende stappen

Wat na deze werkgroep?

  1. Verwerking van de input van de brainstorm oefening.
  2. Verder onderzoek en voorbereiding van de volgende thematische werkgroep.
  3. Publicatie op de Kennishub

Feedback kan bezorgd worden aan laurien.renders@vlaanderen.be

Andere werkgroepen

WerkgroepType werkgroepDatumTijdLocatie
Thematische werkgroep 1Data en informatie werkgroep2024-03-149u-12uTeams
Thematische werkgroep 2Technologie werkgroep2024-04-169u-12uTeams
Thematische werkgroep 3Technologie werkgroep2024-05-1513u-16uTeams